System of Intelligent Actors: The DevOps chapter

Ravindra Manjunatha, Tatsuya Arai, Yinxiao Zhang, Deepanshu Rastogi, Goutham Nareddy,
Nate Slater, Anshuman Mishra, Mohan Nataraj, Deap Ubhi, Sunil Mallya*
sunil@flip.ai'!

'Flip AI, San Francisco and Bangalore

This report introduces a new Mixture of Experts (MoE) LLM by Flip Al that aims to automate
several important tasks in the DevOps and Observability domain. Our vision is to enable developers
to debug incidents by starting from a detailed analysis of what’s happening in their environment
rather than an alert. The report generated by Flip Al includes potential root cause analyses (RCA),
allowing developers to swiftly resolve incidents in minutes as opposed to hours of debugging in a war
room. Looking ahead, we anticipate reflecting on the past practice of repeatedly querying various
observability storage systems for debugging production incidents as an obsolete and cumbersome
approach. The intended audience for this report is chief technologists at large enterprises and
developers interested in the next generation of observability capabilities.

Abstract

One could argue that the most creative aspect of a software developer’s job is
writing code, which they love to do. One could also argue that the least creative
aspect of a software developer’s job is to get the dreaded on-call 2am page to debug
a production incident. The average time it takes to debug production incidents is
in the order of a few hours. While there has been an abundance of research and
startup activity in enabling developers to code faster, similar effort and energy
have not been invested to reduce the operational pain points facing developers,
devops engineers and SREs in debugging and remediating production incidents
more efficiently. To address this very problem, we at Flip Al built the world’s
first Large Language Model (LLM) for DevOps and Observability, Flip DevOps
LLM. Popular LLMs have been shown to be effective at coding tasks, however they
aren’t near ready to debug incidents in complex enterprise environments. In this
technical report, we showcase how Flip AI’s Mixture of Experts (MoE) style LLM,
trained on 100+ billion tokens of DevOps related domain data, is vastly superior
to general LLMs (open source and proprietary API-based LLMs) in debugging
production incidents. Flip DevOps LLM is composed of specialized sub-networks
that are experts in a few dozen tasks each. Based on extensive benchmarks that
include real world production incidents, we find Flip DevOps LLM is able to debug
production incidents in complex production environments with high accuracy in
under a minute and on several internal benchmarks, 67.6% better than the best
general open source MoE Mixtral model, and 34.5% better than GPT-4.

*CTO, Flip Al and corresponding author.
Acknowledgment: We would like to thank our team members Vinayak Rao, Vinoth Thirumalai, Subhadip
Ghoshal, Vishal Gowda, Benji Haye, Harish Arora and Corey Harrison.

https://www.flip.ai/

1 Introduction

In the modern era, virtually every large enterprise or institution in the world is dependent on software
to orchestrate their core businesses. As such, each of these enterprises must also rely on a constellation
of monitoring tools to determine the health of their software applications and underlying infrastructure
at any given point in time. Today, technical leaders and developers have an abundance of choice
when it comes to observability platforms, from commercial platforms to open source alternatives; and
yet, the practice of debugging incidents remains far from an efficient, methodical and timely process.
In almost every organization, the critical process of observing systems and bringing them back to
health has devolved into a convoluted process, resembling a porridge of procedures aimed at restoring
operational health. For a truly vexing and potentially catastrophic incident, you bring in the grizzled
veteran warrior — a DevOps Achilles, a skilled professional well-versed in navigating the intricate
maze of logs, performance metrics, and intricate system interactions - in other words, someone who
knows where all the secrets reside. These specialists bear the weight of swift resolution on their
shoulders, imparting their expertise in the war rooms of Slack, Teams and Polycoms. There is just no
compression algorithm (yet!) for that kind of experience in debugging production incidents. Flip Al
is changing this. We set on a journey to compress the operational knowledge of those “set of warriors”
that exist on your teams, but at 10x the speed. In other words, we are building the world’s foremost
subject matter expert at debugging incidents across any permutation of application architectures,
technologies, coding languages and infrastructure in the world.

So why haven’t observability platforms gone the extra mile to solve this problem in the last 20 years?
Simply, it’s because observability tools have been reduced to expensive big data storage and retrieval
systems, all of which have their own unique, arcane query syntaxes and quirks that lock in your data.
They obsess over shaving off 500 milliseconds on a query that accesses 100GB of data, while all
along the true bottleneck in the debugging process are humans and their ability to rapidly interpret
that data. The ability to analyze and root cause incidents are not dependent on the faster retrieval of
your observability data; rather it is because there are human experts that have an existing hunch based
on past experience. They are able to author intelligent queries into these observability systems to
retrieve the appropriate telemetry data, and sift through the data to find patterns and causal elements,
all while keeping the production incident as context. Incident debugging and root cause analysis is
not a big data problem, yet existing observability vendors’ businesses are dependent on projecting it
as one. In reality, the incident analysis process is a collaborative exercise among experts that can be
broken down into four distinct phases.

Phases of Incident Debugging

1. Triage: Incident Triage and On-call Mitigation

2. Hypothesis: Hypothesis Formulation and Localization
3. Debug: Collaborative Debugging with Experts

4. Correction of Error: Resolution and Corrective Actions

A typical workflow of the incident debugging process begins with the creation of an incident report
and/or a page to relevant on-call engineers after some pre-configured alert or alarm fires. Next, a war
room of developers, subject matter experts and other stakeholders gets set up with the objective of
getting back to normal operation of production software by finding the root cause and mitigating
the incident. The first responder or the operator on-call in this group focuses on incident triage and
problem identification, i.e understanding what is wrong, what is the impact, and what may be the
fastest way to alleviate the incident. This is not quite the root cause fix, but a temporary band-aid.
Mitigation Steps allow for the production system to restore to normal or acceptable operational state.
Hence we carve out an explicit fourth phase for resolution and corrective actions that pertains to steps
taken to restore to forward operation, i.e. production systems now run an improved version of the
software. Phase two involves hypothesis formulation based on collected data, narrowing down the
search for the underlying problem. Within the war room, many individual subject matter experts from
cross-functional teams engage in intense communication and information-sharing to delve deeper
into the identified hypotheses.

Although phase 2 and 3 appear distinct, they are often commingled and happen in parallel. The final
phase, Resolution and Corrective Actions, focuses on developing a targeted action plan to address the
root cause, implementing fixes, and monitoring the system’s response to ensure effective resolution.

Jomememeeenneennnneaaes R . @ summary Agent Flip Agent

a Splunk Query i 3 [Guardrails
Agent

o Trace Analysis

T Agent
El Agent
Elastic Query Knowledge
®* agent « stte Base

CoMELT

Software Expert
A Agent (k8s, Redis,
MysaL...)

Prompt

® Actor LM Interface
Query Agent

£ Cloud Infrastrusture
¥ - Agent (AWS, GCP..)
Bl i1 i — Tools
«.. COMELT Data° i %
Retrieval Agents £ Log Parser Agent
1

--- Director -==-==--"

- Prometheus

Figure 1: Flip Al System of Intelligent Actors

To automate the above incident debugging analysis, mitigation and root cause process, we at Flip Al
have developed a Large Language Model-driven end to end workflow automation that mimics the war
room process, which we refer to as “System of Intelligent Actors,” as illustrated in Figure[T] that are
trained in a synthetically generated chaos environment, the details of which are in section 6. These
actors are akin to subject matter experts and leverage the Flip DevOps LLM to query observability
systems, reason through the data, perform analysis and summarize the potential root cause of an
incident. Please refer to Appendix A for sample RCA reports from production systems that Flip Al
has debugged.

2 Introducing COMELT for Observability

Navigating incident debugging and root cause analysis involves quite a journey due to several
complexities. First off, figuring out the root cause of an incident can be a bit like solving a puzzle
— it might be one thing or a mix of different factors all tangled up. During an incident, you get hit
with a bunch of alerts — some showing the way, others caused by chain reactions, and some just
giving symptoms without revealing the actual root cause. Plus, software systems are a bit like moving
targets, with hidden code paths that make it tricky to pinpoint a fixed root cause because things
change so fast.

Now, the proof for why an incident happened is often hidden in the MELT data (Metrics, Events,
Logs, Traces) collected during operations. But here’s the catch — observability tools usually stash this
data in different places without a clear way to connect the dots, and there’s no magical key to connect
it all in a meaningful way. This means humans have to step in, dive into each source, and piece the
puzzle together. Oh, and developers don’t stop there — they also dig into build systems and actual
code, leading us to coin the term "CoMELT" to amalgamate code and MELT.

Considering all these challenges, hunting for the "real root cause" can feel like being stuck in a bit of
a maze. Sometimes, it’s not just about the final answer but understanding all the twists and turns in
the evidence that lead us there.

3 Related Work

The exploration of automated incident debugging has predominantly emerged as a subset focused
on the automatic identification of abnormal behavior within software systems. Throughout the
industry’s history, automation has played a pivotal role, manifesting in statistical analysis to pinpoint

anomalies and scripting to execute mitigation actions. Efforts have been made to automate mitigations
directly[27]], but these attempts have fallen short of providing a comprehensive solution due to the
diverse nature of incidents, which varies across teams and evolves over time [[1][{[11].

With the growing popularity of machine learning, this field has evolved, adopting the term AIOps
within the industry. Key works in the industry have concentrated their automation endeavors on
specific use cases, such as debugging applications [24], log analysis [17], system logs [9][7], appli-
cation performance with traces [21]], network anomaly detection [4]], and software-defined network
debugging [23]. These approaches leverage historical data and system logs to train models capable of
detecting deviations from normal operation.

The integration of automated incident debugging into continuous integration and continuous deploy-
ment (CI/CD) pipelines has been explored to expedite the identification and resolution of issues in
software development workflows, thereby enhancing the reliability of software systems [13]]. Several
software vendors in the industry, including Big Panda, Moogsoft, Datadog, Dynatrace, among others,
have introduced their own variations of AIOps, tailored for anomaly detection in log and metric time
series data. Practically speaking, AIOps has faced challenges in delivering value to its customers,
particularly due to its emergence during a time when substantial quantities of clean and labeled data
were required to train older generations of machine learning models

More recently, with the advent of large language models, there have been attempts to automate
RCA generation by fine tuning these models on specific use cases such as incidents in the cloud
pertaining to network issues [6], database specific incidents [32] and IT operations [[12]. These efforts
concentrate on a limited spectrum of use cases and are predominantly assessed through question
answering and multiple-choice question scenarios, rather than achieving a comprehensive, fully
automated incident debugging solution.

Flip Intelligent Actors Key Actions
Step 1 - Inputs s Incldent Classification + Recommend capacity adjustments
Incident Triage & i A =) : Key Events Analysis « Alert upstream & downstream service
First Responder H Alerts Events : owners
e . H : Request, Errors, Latency Analysis
Mitigation R : .
Impacted Service(s) Anslysls - Suggest change event revisions
e, @IS 190000000000006360000 B

Step 2 . i X Error Log Analysis « Find errors, events and metrics

®) Incident Identification related to the incident
ngothesius ’ Metrle Pattern Analysis + Summarize errors and find causal
Formulation (Q impacted Service(s) Analysis

Log : Metric Causal Analysis links in metric data

Step 3 Expert Summarization + Create executive summary of issue

® Error Log Analysis
Expert Issue Similarity - Summarize corroborating evidence

fi o) a q

Debugging O DEHE RS CrEE Corroborating Evidence - Create links to similar issues

|~ Trace Analysis Fault Condition Analysis
Step 4 : ’ + Create correction of error report

. . s Key Event

(©) Fault Condition Analysis ummarize fey Events
Resolution & Summarize Service Impact « Create incident timeline
Corrective Actions &) i i —

24 CEIRE LA Summarize Fault Condition

Key|Events/Anallsls Summarize Corroborating Evidence

Figure 2: Phases of Incident Debugging

4 Problem Statement

In the context of software production systems, an incident signifies any occurrence leading to service
disruptions or a decline in operational quality. In response to such incidents, the process of root
cause analysis becomes imperative for uncovering the underlying causal issues responsible for the
disruptions. The RCA process in production systems encompasses diverse stages, starting with the
collection of incident-related data, sourced from logs, metrics, traces, and/or alerts. Subsequently, a

thorough analysis of the gathered data is undertaken to identify patterns, anomalies, or correlations
that may offer insights into the root cause. Following this, hypotheses regarding potential root
causes are formulated and rigorously verified, akin to the process described in cloud services incident
resolution. The problem that Flip Al focuses on is the automation of root cause analysis for production
incidents by debugging the issue using data in multi-modal sources, thus minimizing the time to detect
incidents, improving recovery time, and the number of expert hours required to resolve production
incidents.

Challenges in automation of RCA arise from diversity in technology stacks, programming languages,
architectural patterns, deployment environments, and configurations across organizations, impeding
the development of a universally applicable automated solution. The variability in how incidents
happen, the nature of their root causes coupled with the lack of standardized data formats and
inconsistent logging practices, further complicates automation. In short, there’s no lack of creativity
when it comes to how humans can induce errors into production systems knowingly or unknowingly.
Furthermore, most organizations that manage large scale systems capture different system telemetry in
different observability systems of record, adding another layer of complexity to the debugging process.
Addressing these challenges demands deep general domain expertise coupled with knowledge of
nuanced differences in how software systems are architected for specific use cases. Two companies
could be using the same canonical piece of technology (cache, database, etc.) in completely different
ways, even if they were using the same technology and vendor, yet they could be on different
software versions! In order to attempt automation, it is essential to understand all of the complexities
involved in the software system before hypotheses can be formulated and explored in a programmatic
way, which is why almost all of the incident and root cause analysis process today is inherently
human-driven with or without the help of some tools.

5 Architecture

B O EORELE Y Experts ----eceosonemeoeinnii e

Knowledge Based Decoder

Token1 —» Ve —> Token1..n —

Encoder

Tokenizer

Token 2 —»

Add + Normalize

— Token1..n —— Log & Trace Decoder —>

Time Series Decoder —f

Figure 3: Flip DevOps LLM (MoE) Architecture

Self Attention
Routing FFN Layer
Tokenizer
Output

Tokenn — N —> Token1..n ————————»

Tokenizer

‘+--- NlLayers =----"

While the majority of the world is captivated by the power of general purpose LLMs, we believe in the
power of domain specific language models (DLMs) to solve specific problems within an enterprise.
The only argument for increasing the size of the language models beyond a certain threshold is
to fit on low frequency patterns found in large noisy data corpora. We strongly disagree with the
proposition of “scale is all you need.” Instead, we argue that the scale is for those who do not want
to invest in cleaner and disciplined approaches to training data. Our experiments repeatedly show
that smaller models are easier to steer, tune, and more practical because they can be deployed with a
smaller compute footprint. Recent results from smaller LLMs such as Phi2 [[14], Mixtral[[15]] support
these claims.

Given the complexity of the problem we are solving at Flip A, our model needs to be good at a
multitude of tasks across modalities (e.g. language, log, code, graphs, time series, etc). We started our

journey with encoder-decoder models as the base model and saw high performance on a number of
tasks particularly on log, language, and graphs. However some tasks, particularly code and time series
related, were not at acceptable accuracy. Based on experiments, we found tokenization and decoder
to be the most influential in cause and effect. It prompted us to build a single encoder multi-decoder
architecture where each modality had a specialized decoder. With the popularity of mixture-of-expert
architectures such as switch transformer [[10], MoE from Meta[2]] etc., we recently transitioned closer
to a MoE style architecture. However, in our case each expert is independently trained, has its own
tokenizer and decoder. Once experts are trained, we do a final training pass on the routing layer to
help direct the input to the specialized expert in the network.

At the heart of our innovation is the abstraction layers we have built on top of our LLM that
are responsible for planning, task decomposition and execution, Directors, Actors, and Agents,
respectively, illustrated in Figure [T} Models and model architectures may evolve over time, and hence
are not the correct abstractions to standardize or expose for external consumption. Many of the tasks
that Flip needs to solve are multi-modal, i.e. each observability tool speaks a different language and
reveals a different part of the story. This story can only be completed by connecting the dots across
the data modalities and hence require coordination amongst many experts or chaining of results by
many experts.

The automation of the debugging process starts with an incident alert, based on which the Director
(planner) creates a runbook specific to debugging the incident and invokes the Actors to carry out the
steps. The Director generates the plan using a custom domain specific language (DSL), specifically
developed by Flip Al for incident debugging. An Actor is a self-sufficient module that uses one
or more agents to automate a step in the runbook with clearly defined input and output schema.
Actors are workflow specific. Simply put, it’s equivalent to an API. Actors utilize Agents, that are
a set of specialized toolkits for Actors to complete a specific task on COMELT data such as log
summarization, generating queries for observability platforms etc. Since they are the interface layer
into the model, Agents are responsible to utilize a set of tools[26] from the library such as code
interpreter, output guardrails, knowledge bases. Agents use different decoding techniques to reduce
hallucinations [28]], adhere to specific output formats, and ensure high quality results. In the workflow
described, A Director might decide to back-track a particular path if the result is negative or there is a
lack of supporting evidence from a particular Actor. Finally, all of the results get assembled to create
a detailed RCA report for the developers to consume. This approach is similar to compositional
reasoning put forward in the Chameleon[19] and tree of thought[30] paper albeit at the model task
level abstraction.

6 Model Training

Given the exposure to diverse technologies and the edge cases that they unveil, It is challenging to
bring LLMs that are production ready with common training regimes. At Flip Al, we are able to
perform robust and scalable incident debugging thanks to our novel technology of chaos training
which we call as Otrashi]

6.1 Pre-Training: Continued domain pre-training

We leverage pre-trained (instead of zeroed-weights) general-purpose base models trained on trillions
of tokens with exaflops of computing power. In constructing the DevOps knowledge base, we extend
the pre-training phase using these released checkpoints. We meticulously curate a dataset comprising
over 100 billion tokens sourced from diverse platforms, including open source code datasets, log
datasets, scraping technical blogs, linux forums, github projects, etc., all possessing permissible
commercial licenses. A significant proportion of these datasets are scraped from the internet and are
inherently noisy. We strongly believe that artifacts from incorrect parsing or low data quality can
affect outcomes, hence have developed a meticulous pipeline to filter low quality data.

Our training data pipeline incorporates minhash-based functions to eliminate duplicate content, binary
data filters, classifiers assessing content relevancy, and document quality. To ensure the inclusion
of diverse data modalities and comprehensive coverage of domains deemed vital by our customers,
we maintain a careful balance. For the continuous pre-training phase, we construct self-supervised

?Otrashi means Chaos in the Indian language of Konkani and Kannada

datasets with different pre-training objectives. Our findings reveal that a singular masking or denoising
technique falls short, prompting the adoption of specific corruption objectives tailored to distinct data
domains or modalities. A majority of documents undergo transformation with the UL2[29]] objective,
while log and trace modalities use causal masking. For code and configuration related content, a
novel corruption method is introduced, focusing on masking the most significant parts of the code
to aid the model to learn the more challenging aspects as shown indk. The pre-training phase uses
roughly 80 billion tokens and mirrors a curriculum training process, where simpler denoising-based
datasets take precedence in the initial stages, progressing to more complex samples towards the end
of training. We use PyTorch as our LLM training framework and find that to be the most convenient
and robust in comparison to other brittle open source training wrappers.

LLM Knowledge Layers

Instruct Tuning,
Alignment Training, RLHAIF

Task Fine Tuning

nnnnnnnnnnnnnnnnnnnnn

Domain Knowledge

World Knowledge Pre-Training Data
PILE, Openiebtext, C4 o)

Base Model
(GPT, TS, Flan, ChatGPT. Corpus Size

@ ®) ©

Figure 4: (a) LLM Knowledge Stack (b) Training Data Hierarchy (c) Advanced Denoising

6.2 Instruction tuning and Fine tuning

We curate from existing instruction tuning datasets available in the open source world [20]] [8] [31].
However, we mostly rely on creation of our own instruction tuning datasets using experts in the
loop and evol-instruct[22] methodologies on high quality LLMs. This dataset, while it may appear
to be synthetically generated, is much closer to real data because the generation is conditioned on
existing content rather than prompting the LLMs to generate data without much context. We call
this RAG-based[16] synthetic data generation. This generated data is also subjected to data cleaning
and quality pipelines. Finally, the instruction data is varied based on the techniques that invert inputs
[L8] [8] and add prompt variations. For the task specific fine-tuning phase, we create the high quality
of data that is subjected to double blind expert annotation passes, followed by an expert annotator
arbitration [3]] for conflicted labels. This phase of data annotation is expensive in cost and time but
allows us to increase our model accuracy and trustworthiness in evaluation data.

Our annotation process and data pipelines have been refined over the past 18 months. This deliberate
investment has proven to be crucial, contributing substantially to the high accuracy achieved in our
tasks and Root Cause Analysis (RCA) process.

6.3 Chaos Training

The model acquires extensive knowledge during the initial three stages of training pertaining to
DevOps and specific tasks associated with Root Cause Analysis (RCA) debugging. This is followed
by pivotal phase of Chaos training. The knowledge accumulation for the model during the first three
phases is analogous to the educational journey of an engineer progressing through high school, a
computer science degree, and culminating in a PhD. However, the practical challenges encountered
in the real-world scenario necessitate experiential learning. In order to build proficiency in incident
debugging, a reinforcement learning-based approach is used on synthetically generated incidents,
termed as RLHAIF, involving both human and Al feedback. Using OpenAl Gym [3]] as a reference for
reinforcement learning training environment, we developed an internal chaos gym for DevOps, named
Otrashi. This chaos gym facilitates the generation of synthetic incidents in diverse environments
such as Kubernetes, AWS, GCP, Azure, Serverless, VMWare, introducing chaos at the infrastructure,
orchestration, or code level by intentionally injecting bugs. The subsequent Flip debugging process
leads to the creation of a Root Cause Analysis report. Since the incident is intentionally generated

by Otrashi, it passes all the metadata and scenario information to the RLHAIF trainer, enabling
feedback-based training for enhanced model proficiency. This is the invention that sets us apart from

CoMELT Ol ility Data Store /\ Incident

OTRASHI T . l

RLHAIF
Application —

Orchestration
(Kubernetes, Serverless

(PPD (DPD
Infrastructure
(AWS, GCP, Azure, VSphere]

Human

Al Critic Preferences

inject Faults, Errors & Bugs
i

Chaos LLM
Chaos Scenario Metadata

Feedback based reinforcement learning in Otrashi (Chaos Gym)

Figure 5: Otrashi: Chaos Gym for Feedback Based Training

7 Evaluation

The primary focus of our evaluation centers on assessing the process of end-to-end automated
incident debugging. Recognizing the complexity of the problem at hand, we believe that solely
evaluating the ultimate goal of root cause generation is inadequate. Instead, our approach involves
a comprehensive evaluation of all essential components necessary for the execution of root cause
analysis. In the realm of true academic evaluation, the absence of direct baselines is notable, as no
existing observability product or LLM is specifically tailored to address the end-to-end problem
of RCA analysis. Consequently, the breakdown of tasks not only aids in assessing the baseline
performance but also helps quantify the impact on accuracy from our training process. The true
baseline for our evaluation remains as the expert humans in each sub-category who have annotated
the data.

To establish a robust evaluation framework, we define domain-specific tasks integral to the root
cause analysis process and rigorously assess the Flip model’s performance against these tasks. Our
evaluation methods adhere to statistically sound approaches, diverging from the prevalent trend of
relying on GPT-4 as an automated analysis benchmark, which we deem flawed. Our commitment to
robust evaluation is evident through meticulous curation of high-quality test data, majority of which
are from real but anonymized production environments. We further ensure that all test samples used
for evaluation are verified to be distinct from the training data. Upholding the principle of blind
evaluation, the test sets are predominantly crafted by human subject matter experts by undergoing a
double-blind annotation pass, and an arbitration step to guarantee high quality. These test set samples
are meticulously chosen for semantic diversity, free from duplicates or near-duplicates, aiming to
represent the broad spectrum of the sample space for a given task. Our intention is to ensure that our
evaluation reflects the all the complexities of a given task, it’s nuances thus instilling confidence in
the ability our model to generalize across use cases for that given task.

To establish benchmarks, we will utilize the best performing open source model, namely Mixtral-MoE
v0.1 [[15] and closed source API-based LLM namely GPT-4. However, it’s crucial to underscore
that our primary goal in the RCA process is to surpass or at least match human experts, rather than
being fixated on outperforming general-purpose LLMs. A practical consideration worth noting
is that observability data is commonly classified as Personally Identifiable Information (PII) in
nearly every enterprise organization. Consequently, comparing with API-based LLM products
can be challenging, as they are inherently multi-tenant, potentially infringing upon enterprise data
governance and compliance requirements. Furthermore, the open source LLMs we evaluate pose
an additional challenge related to packaging and deployment in enterprise environments. These
complexities underscore the need for a careful and nuanced evaluation approach that accounts for the
specifics of the RCA process and the practical challenges associated with enterprise settings.

Software
Engineering

Reasoning Single
Modality ,
Cloud e
DevOps L’
Reasoning ,7 Code, Bugs

and
Exceptions

Trace
Summary

Log
Understanding

Database
Debugging .,
/7

Metric

e Timeseries
,7 Multi

L’ Modality

Log & Metric
Summarization

Flip GPT-4 Mixtral

Figure 6: Flip DevOps LLM Performance Benchmark

7.1 Results

We evaluate the model across 30+ different tasks of utility that span all of the COMELT modalities
(code, metrics, events, logs and traces), complexity levels and task types. However, while reporting,
we aggregate the granular tasks into higher level categories that reflect either the war room personas
or the knowledge they encompass and present results below in spider chart [IT] The categories
are listed below with example tasks within each category, refer Appendix B for illustration of the
tasks. All tasks in the benchmark are reported against expert human annotations with the majority of
the test data being collected from real and diverse production environments. To ensure fairness in
benchmarking, we take the best of 5 prompts and temperature settings for both Mixtral and GPT-4
baselines and report the numbers in our evaluation. As an additional note, these are the same prompts
we use in our training as well, hence we believe that the prompts being used are of high quality
and should not be a cause of underperformance in baselines. For each task, we use the best metric
applicable; for example, for classification, we use F1 score; summarization, Q&A and reasoning
related tasks, we use Rouge-2. For tasks such as SQL and code generation, we do compilation and
execution check along with exact match scores; and for time series forecasting related tasks, we use
mean absolute percentage error. For the convenience of the readers, we normalize all the scores to a
scale of O to 1. For more details on the normalization, please refer to Appendix C. For tasks such as
summarization that are prone to hallucinations, we do additional checks to capture factual correctness
using automated entity-level factual consistency method[25] and human evaluations.

The Flip DevOps LLM consistently outperforms Mixtral by an average of 67.6% and surpasses
GPT-4 by 34.5% across various tasks, as detailed in Table [I] There is a noticeable step-function
improvement in performance, particularly on tasks related to Log Understanding, Log & Metric
Summarization, Metric Timeseries, and Database Debugging. This observation strongly supports our
assertion regarding the necessity of domain-specific training for effectively addressing challenges
that require expert human insights. The Flip DevOps LLM attains a performance range between
0.77 to 0.95 compared to human expert accuracy. It is crucial to emphasize that while the baselines

fail to have satisfactory performance on tasks that involve multiple pieces of evidence which we
term as multi-modality. The multi-modality here is akin to code-mixing in languages where a mix of
languages tell a coherent story. It’s noteworthy that even in single-modality tasks, the performance
of the baselines does not approach that achieved by the Flip DevOps LLM except for the tasks
of Software Engineering Reasoning where GPT-4 is marginally better. Our training process at
Flip Al ensures the absence of test set contamination. However, we are unable to verify whether
GPT-4 or Mixtral have been trained on the test samples, particularly in tasks related to Software
Engineering, Cloud DevOps Reasoning, and Code, Bugs, and Exceptions that are likely to be in
the public domain. Additionally, it is essential to note that GPT-4 responses tend to be verbose and
include unnecessary details, leading to higher recall for those outputs. In a preference study focused
on Trace Summarization, Log & Metric Summarization, and Software Engineering Reasoning, expert
annotators expressed a preference for the outputs from Flip DevOps LLM 65.7% of the time and tied
with GPT-4 14.2% of the time. All of these results underscore the superiority of the Flip DevOps
LLM over baseline models.

Table 1: Model Evaluation Performance Scores (normalized scale 0-1) for Categories

Category Flip GPT-4 Mixtral Sample Tasks

Log Understanding 0.77 0.58 0.4 Log Parsing, Classification, Generative Log NER
Code, Bugs, Exceptions 0.80 0.71 0.68 Code Explain, Exception Cause Reasoning
Software Engineering Reasoning (.81 0.84 0.68 Software Engineering Q&A with Explanation
Cloud DevOps Reasoning 0.88 0.76 0.6 Cloud Certification, DevOps Scenario Reasoning
Trace Summary 085 0.73 0.62 Summarize Multiple Flame Graphs
Database Debugging 0.85 0.7 0.56 Database Performance, Slow Query Debugging
Log & Metric Summarization 095 0.26 0.17 Summarize RCA from Metric & Log evidence
Metric Timeseries 0.86 045 0.33 Summarize Cause of Spikes, Forecast Latency Spikes

8 Discussion

Among the largest institutions in the world, all of which are deeply engaged in the development,
maintenance, and management of extensive software systems, the imperative to ensure the robust
health and optimal performance of these systems has emerged as a one of their most urgent priori-
ties. Consequently, these institutions make substantial investments in both technical expertise and
cutting-edge tools aimed at sustaining the well-being of their software ecosystems. It has become a
norm to witness sizable teams comprising software developers, DevOps engineers, and site reliability
engineers (SREs) operating within the precincts of every major enterprise. To cater to the needs of
these subject matter experts, enterprises channel significant resources into observability and moni-
toring tools—platforms designed to accumulate and store telemetry data emanating from software
applications and their underlying infrastructures. Given the intricate nature of large enterprises, it is
increasingly commonplace to encounter a diverse array of observability platforms concurrently in use.
In instances where undesired or anomalous behavior manifests within enterprise software systems,
the resolution often hinges on the collaborative efforts between technical subject matter experts and
the observability platforms. This collaboration is crucial for deciphering the root cause of issues and
implementing corrective measures to restore the system to its desired state.

The tasks of building, maintaining, and managing software applications and infrastructure are no
longer exclusive to technology companies. Instead, software has evolved to become as indispensable
as human labor in the endeavors to construct and expand institutions of various kinds—whether they
be large or small, in the private sector, governments, or beyond. And given the increasingly complex
nature of software systems, things will go awry. We at Flip Al see a clear lane for domain specific
LLMs (DLMs) to play a commanding role in the effort to help anyone and everyone who has ever
answered that early morning page, or responded to that flurry of war room messages, or succumbed to
a storm of system alerts; to provide for them the world’s foremost set of technical experts whose sole
job is to help them rapidly solve the Rube Goldberg-like puzzles of debugging production incidents.
Given how urgent of a priority this is for any institution that is dependent on software for the smooth
functioning of their business, Flip Al has found a high degree of resonance with our approach to
solving this ubiquitous problem. Our next set of investments is to allow our customers the ability to
customize the underlying LLMs using internal documentation and rich expertise they have built up in
their enterprise environments.

10

9 Conclusion

With the advent of large language models, we see a clear application of this new technology to
augment the technical subject matter experts by treating the telemetry data stored in observability
systems as a semantic language. Flip Al DevOps LLM rapidly reasons through multiple modalities
of CoMELT data (i.e. code, metrics, events, logs, traces), and synthesizes a narrative of what
these languages are telling us about unwanted or anomalous system behavior. Because an LLM can
interpret large sets of fractious, diverse data in a fraction of the time that a human could, this approach
allows Flip Al to very successfully augment technical subject matter experts in debugging incidents
and getting systems back to health much faster than before. It is worth noting that one of the key
reasons why our approach has been successful is in our belief that a concerted, collaborative system
of domain specific models (DLMs) can produce vastly superior results to a traditional, generalist
large language model (LLM). This belief is validated by the results, not only with our customers, but
also in the benchmarking discussed in this paper. Flip’s system of intelligent actors that encompass
the Flip DevOps LLM and observability integration are available today to be deployed in a customer’s
virtual private cloud, on-premises or as Software-as-a-Service (SaaS).

References

[1] Abdulaziz Alaboudi and Thomas D. Latoza. An exploratory study of debugging episodes.
ArXiv, abs/2105.02162, 2021.

[2] Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor Mihaylov, Myle Ott, Sam Shleifer, Xi Vic-
toria Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pasunuru, Giri Anantharaman, Xian Li,
Shuohui Chen, Halil Akin, Mandeep Baines, Louis Martin, Xing Zhou, Punit Singh Koura,
Brian O’Horo, Jeff Wang, Luke Zettlemoyer, Mona Diab, Zornitsa Kozareva, and Ves Stoyanov.
Efficient large scale language modeling with mixtures of experts, 2022.

[3] Ron Artstein. Inter-annotator agreement. 2017.

[4] Monowar H. Bhuyan, Dhruba Kumar Bhattacharyya, and Jugal Kumar Kalita. Network anomaly
detection: Methods, systems and tools. IEEE Communications Surveys & Tutorials, 16:303-336,
2014.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[6] Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie Cao, Xuedong
Gao, Hao Fan, Ming Wen, Jun Zeng, Supriyo Ghosh, Xuchao Zhang, Chaoyun Zhang, Qingwei
Lin, Saravan Rajmohan, Dongmei Zhang, and Tianyin Xu. Automatic root cause analysis via
large language models for cloud incidents, 2023.

[7] Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, and Michael R. Lyu. Experience report:
Deep learning-based system log analysis for anomaly detection, 2022.

[8] Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan
Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu,
Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie
Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent
Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob
Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned
language models, 2022.

[9] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog: Anomaly detection and
diagnosis from system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS *17, page 1285-1298, New York,
NY, USA, 2017. Association for Computing Machinery.

[10] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity, 2022.

11

[11] Supriyo Ghosh, Manish Shetty, Chetan Bansal, and Suman Nath. How to fight production
incidents? an empirical study on a large-scale cloud service. In Proceedings of the 13th
Symposium on Cloud Computing, SOCC 22, page 126—141, New York, NY, USA, 2022.
Association for Computing Machinery.

[12] Hongcheng Guo, Jian Yang, Jiaheng Liu, Liqun Yang, Linzheng Chai, Jiaqi Bai, Junran Peng,
Xiaorong Hu, Chao Chen, Dongfeng Zhang, Xu Shi, Tieqiao Zheng, Liangfan Zheng, Bo Zhang,
Ke Xu, and Zhoujun Li. Owl: A large language model for it operations, 2023.

[13] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R. Lyu. A survey
on automated log analysis for reliability engineering. ACM Comput. Surv., 54(6), jul 2021.

[14] Mojan Javaheripi and Sébastien Bubeck. Phi-2: The surprising power of small language models,
2023.

[15] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts, 2024.

[16] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Kiittler, Mike Lewis, Wen tau Yih, Tim Rocktédschel, Sebastian Riedel, and
Douwe Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks, 2021.

[17] Yilun Liu, Shimin Tao, Weibin Meng, Jingyu Wang, Wenbing Ma, Yanqing Zhao, Yuhang Chen,
Hao Yang, Yanfei Jiang, and Xun Chen. Logprompt: Prompt engineering towards zero-shot and
interpretable log analysis, 2023.

[18] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou,
Quoc V. Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data
and methods for effective instruction tuning, 2023.

[19] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun
Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language
models, 2023.

[20] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long
Zhou, Michele Tufano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng,
Shengyu Fu, and Shujie Liu. Codexglue: A machine learning benchmark dataset for code
understanding and generation, 2021.

[21] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding, Jian
He, and Chengzhong Xu. Characterizing microservice dependency and performance: Alibaba
trace analysis. In Proceedings of the ACM Symposium on Cloud Computing, SoCC 21, page
412-426, New York, NY, USA, 2021. Association for Computing Machinery.

[22] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models
with evol-instruct, 2023.

[23] Syed Akbar Mehdi, Junaid Khalid, and Syed Ali Khayam. Revisiting traffic anomaly detection
using software defined networking. In Robin Sommer, Davide Balzarotti, and Gregor Maier,
editors, Recent Advances in Intrusion Detection, pages 161-180, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[24] Vijayaraghavan Murali, Edward Yao, Umang Mathur, and Satish Chandra. Scalable statistical
root cause analysis on app telemetry, 2021.

12

[25] Feng Nan, Ramesh Nallapati, Zhiguo Wang, Cicero Nogueira dos Santos, Henghui Zhu, Dejiao
Zhang, Kathleen McKeown, and Bing Xiang. Entity-level factual consistency of abstractive text
summarization. In Paola Merlo, Jorg Tiedemann, and Reut Tsarfaty, editors, Proceedings of
the 16th Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume, pages 2727-2733, Online, April 2021. Association for Computational Linguistics.

[26] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools, 2023.

[27] Manish Shetty, Chetan Bansal, Sai Pramod Upadhyayula, Arjun Radhakrishna, and Anurag
Gupta. Autotsg: Learning and synthesis for incident troubleshooting. In Proceedings of the 30th
ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, page 1477-1488, New York, NY, USA, 2022.
Association for Computing Machinery.

[28] Weiwei Sun, Zhengliang Shi, Shen Gao, Pengjie Ren, Maarten de Rijke, and Zhaochun Ren.
Contrastive learning reduces hallucination in conversations, 2022.

[29] Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Jason Wei, Xuezhi Wang, Hyung Won
Chung, Siamak Shakeri, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Denny Zhou, Neil
Houlsby, and Donald Metzler. Ul2: Unifying language learning paradigms, 2023.

[30] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.

[31] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-sql task,
2018.

[32] Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. LIm as dba. 2023.

A Appendix: Sample RCA Reports

In this section, we share few incident RCA reports that Flip Al has debugged in production. All
incidents have been anonymized to protect customer data. The list is not structured to be exhaustive,
instead intended to give the reader a flavor of Flip AI’s capabilities. It is noteworthy that, On average
Flip Al takes under 60 seconds to debug these incidents.

13

A.1 Memory Exhaustion

Incident: P90 latency on service has increased beyond the threshold of 5 seconds.

Application Hostlssues (1)

Memory Intensive

B 1-0049ab1eb93153008-Histocal I 1-03493b1e33133005

0 MatchedHstonatpartem] Observeawinas

reacanadm

[EVS
Analysis
P e
[er—
& & VIEW SUPPORTING METRICS

(a) Reasoning Memory Spikes by Flip AL

14

Supporting Metrics

forhosts & and i

09/20/2023 06116115 AW . 69/20/2023 06:16:54 AN
09/20/2023 06:27:13 A¥ , 09/20/2023 06:27:42 AW and 09/20/2023 06:27:55 A
The

Forhost i
91f3e3ce762052000 he system.nem.used increas:

and1327
9a%.

om 6.88 GB 10 6.93 GB betwaen 1324

the system.nen.used increased from 7.39 GB 1o 7.52 GB between1313and 1517, This hosthasa

the totalcapacity.

dtnat,

© Treshaainraphs it “Clcuatedsasine” s basedonusagerpast s cbys

(b) Supporting Evidence

A.2 Insufficient Resource Allocation

Incident: Service is experiencing latency issues occasionally due to poor resource allocation in
Kubernetes

Supporting Metrics Source: AWS

We analyzed the traces that show high latency values for service We notice anincrease in CPU steals from
09/13/2023 07:07:52 AM to 09/13/2023 07:13:15 on Instancel whichis part of -cluster-002. There are 3 service
containers hosted onredacted-cluster-002. Instance2 that hosts is
experiencing higher CPU utilization of >95% in the same time window. We suspect a noisy neighborissue given high CPU

utilization in one container and CPU steals in another. This situation implies that the resource-intensive operations
executed withininstance2 may impact other containers currently running on the cluster.

® Threshold in Graphs with “Calculated Baseline” is based on usage of past 4 days

cla- -container.cpu.stolen Graphason09/13/2023

M Instancel

€
o 30
2
& 20
o 80% Calculated Threshold*
10 ’ \ \
0
N -
T T T T T T T T T T T — P
9
04:41AM 05:10AM 05:39AM 06:08AM 06:37AM O7:06AM O7:35AM 08:04AM 08:33AM 09:02AM 09:31AM 10:00AM
cla- -container.cpu.user Graphason09/13/2023
M Instance1 M Instance2
80% Calculated Threshold*
€
o
e
o N ad L ———
a

—— N LT

T T T T T T T T T T T

o
—
@
04:41AM 05:10AM 05:39AM 06:08 AM 06:37AM 07:06 AM 07:35AM 08:04AM 08:33AM 09:02AM 09:31AM 10:00 AM

15

A.3 HTTP Error Debugging
Incident: Intermittent Sxx Errors in Access Logs

Correlated Alerts

Dropin payments per second May0919.49PM >
5xx Error Analysis
! aws
Impact Analysis Query
FIELDS Gtinestanp, log | PARSE log "+ * « [] "k % " x » "« "w'" as ip_addr,field2,field3,datetine,method,request_uri,protocol,status,bytes, fieldd,user_agent
Observation
5XXerrors startto appearat 05/15/2023 09:20:00 AM andpeakat 05/15/2023 09:25:00 AM .15-30% of requests are failing with HTTP status code 500 Thisis a hit to avalability of the
likely due . The data shows of HITP dthe totalerrors for fequest URIs: /deposit'and /payment’. The
‘/deposit' URIhad 319 erfors, which accounted for 58.6% of all HTTP 5xxerrors, while the /payment’ URI had 225 errors for 41.4% of all HTTP Sxx errors. Thi i be usedtoidentify
areas of the system that may req toreduce errors.
& @ VIEW SUPPORTING METRICS
Error Localization Query splunk-
index="bank_of_anthos_large" sourcetype="kube:+" NOT "kube-audit"
| search "error" OR "warning” OR "fatal" OR "exception" OR "traceback" OR "stacktrace"
| where request_uri="/deposit" or request_uri="/payment"
| stats count by sourcetype
Observation
We observe there are two different types of containers, with 544 and 12 counts respectively. This indicates that the kube:container:frontis the
more popular container type. It appears that there is an ssue with the connection to the ledgenwriter server. The firstlog indicates that i refused, while thatthe
timed out. This could be due issue, orit could be due to an issue with the ledgerwriter server itself,
0 P 'VIEW SUPPORTING METRICS & LOGS
Observation
We observe there are two different types of containers ntand with 544 and 12 count; This indicates that the ontisthe
more popular container type. It appears that there is to server. Thefirst thatth refused logindicates that the
connection timed out. This could be due to anetworkissue, or it could be due to anissue with the ledgerwriter server itself.
0 P VIEW SUPPORTING METRICS & LOGS
Error Localization Query splunkc>
index="bank_of_anthos_large" sourcetype="kube:container:ledgerwriter” | search "error" OR "warning” OR "fatal” OR "exception” OR "traceback" OR “stacktrace"
Observation
"kub doesn'tseemto gs that i HTTPC We needtolook host I
Th for serviceh i i tbalances and submitting ions due to insufficient balances. This could be caused by anumber of issues,
suchas amisconfigured account, alack of funds in the account, or a problem with the system's connectionto the account. Itis also possible that there is a bug in the code that s causing the issue.
Connect your codebase to Flip for code analysis based ntepretation.
& @ VIEW SUPPORTING LOGS
- W
Error Localization Query aws,
FIELDS Gtinestanp, Gressage | FILTER GlogStrean not Like /kube-apiserver-audit.s/
Observation B rercandiae
Th of i 1P addresses locations. Th ies range from 344.048ys to 3.232576ms, with an average latency of 1Ims. The jitter inthe
inthe metrics. The root cause is a network issue impacting connections to services.
B & VIEW SUPPORTING LOGS

16

A.4 Database Debugging

Incident: Database is experiencing performance issues

Supporting Metrics oo QWS

Atthe timestamp 08/02/2023 6:20:00 AH

db.SQLInnodb._rows_read.

traces. Of
) 7.16 M8). The database

hardware/os metrics showed an increasein ReadIOPS (94.51), ReadThroughput (1.55 MB).

°

[E] co-SGLimod._rows_read.avg Graphas 0n08/02/2023

(0555 AMOS:58 AM D6.01AM 06:04 AMOE.07 AMO&10AM OSTSAM O16AM 019 AM 0622AM 0625 AMOS28AM
hugoz ugoz

Supporting Metrics Sosce QWS

Bl cb.saL Select_full_join.avg Graph as on 08/02/2023

Time

I os.network rx.avg Graph as on 08/02/2023

A.5 Configuration Issue

Incident: Increase in HTTP 502 errors from load balancer for a service deployed to Kubernetes

17

Supporting Metrics

Acriticalincident has arisen in an EKS cluster (ARN: am:aws:eks us-east-

R st _1 where a specific pod remains unable to start
and is trapped in a crash-backoff loop. This issue surfaced fallowing the deployment of a service build at
16:20:55. Notably, the errors within the pod became apparent after this recent build, raising concerns of
a potential problem with the Docker image utilized during the process. It's worth nating that the EKS
cluster employs Graviton instances, while the build machine relied on an x86 processor. The incident's
primary focus is onrectifying the Docker image issue to restore pod functionality and alleviate any
operational disruptions.

. Supporting Logs

67 Created container with docker id 43

16:31:47.006519 Started container with docker id 4358f1413a62

31:47.012677 Error syncing pod, skipping: failed to “StartContaing

16

:31:47.013256 Created container with docker id 4350f1413a02

31:47.013614 Started container with docker id 435071413202

31:47.814168 Error syncing pod, skipping: failed to "StartContainer® for “frontend”

18

B Appendix: Task Definition and Examples

B.1 Log Understanding

Task : Log Generative NER
The task requires parsing a log message to generate a structured JSON, where each key represents a named entity.

Input ——> Response

[07.26 13:30:43] chrome.exe x64 - www.example.com:80 close, 2233
bytes (2.18 KB) sent, 401 bytes received, lifetime 00:09

Input ——> Response

2021-06-04 16:53:59.478|ERROR |15301|http-nio- 18300zexecs 63

com.cloudwise.dosm. e.pr c ate":"2021-06-04",
ommonResponseDataAdvice.java: 155)|JSON parse error: imestamp":"16:53:59.478",
java.io. EOFException: Unexpected EOF read on the socket; "level":"ERROR" ,

nested exception is com.fasterxml.jackson.d: i ion: 1153017,

java.io.EOFException: Unexpected EOF read on the socket (through http-nio-18300-exec-63",
reference chain:com.cloudwise.dosm.activiti.vo.model.ModelFormFieldInfovo com. cloudwise. dosm. common .web . CommonResponseDataAdvice . pri
ieldList\"]->java.util.ArrayList[32]) (C aAdvice.java:155) |JSON parse error:
java.io.EOFException: Unexpected EOF read on the socket; nested exception
is com.fasterxml.jackson.databind. JsonMappingException:
]ava i0.EOFException: Unexpected EOF read on the socket (through
nce chain:com.cloudwise.dosm.activiti.vo.model.ModelFormFieldInfovo
T\nFreldList\n] >java.util.ArrayList[32])",

Vexception" o.EOFException",
"nested_exception": "com.fasterxml.jackson.databind.JsonMappingException"
}
Input ——> Response
2023-01-15T08:32:30 - ERROR - [Account] - 17739 - ProgrammingError: { "date":"2023-01-15",
1064 (42000): You have an error in your SQL syntax; check the manual "timestamp":"08:32:30",
that corresponds to your MySQL server version for the right syntax to "process_id":"17739",
use near 'CONSTRAINT dr_idfk FOREIGN KEY (dr_id) REFERENCES "level":"ERROR",
doctor_details (dr_i' , query = CREATE TABLE 'hospital_details' ("component": "Account" ,
‘hospital_id' bigint NOT NULL AUTO_INCREMENT, 'dr_id' bigint NOT "log_message":"ProgrammingError: 1064 (42000): You have an error in your
NULL, 'hospital_link' varchar(40), 'hospital_name' SQL syntax; check the manual that corresponds to your MySQL server
varchar (40) , 'hospital_address' varchar(40), hospital_city’ version for the right syntax to use near 'CONSTRAINT dr_idfk FOREIGN KEY
varchar(40), 'hospital_state' varchar(40),'hospital_country' (dr_id) REFERENCES doctor_details (dr_i' , query = CREATE TABLE
varchar (40), 'hospital_phone_no' varchar(15), 'hospital_speciality' "hospital_details' ('hospital_id' bigint NOT NULL AUTO_INCREMENT,
varchar (40) , 'doctor_link' varchar(46), 'hospital_website_link' 'dr_id' bigint NOT NULL,'hospital_link' varchar(40), 'hospital_name'
varchar (40), PRIMARY KEY ('hospital_id') CONSTRAINT 'dr_idfk' FOREIGN varchar (40) , 'hospital_address' varchar(40),'hospital_city' varchar(4e),
KEY ('dr_id') REFERENCES 'doctor_details' ('dr_id') ON DELETE NO 'hospital_state' varchar(40),'hospital_country’
ACTION) ENGINE=InnoDB" varchar (40) , 'hospital_phone_no' varchar(15), 'hospital_ spenahty
varchar (40), 'doctor_Link' varchar(46), 'hospital_website_link

varchar (40), PRIMARY KEY ('hospital_id') CONSTRAINT 'dr_idfk' FOREIGN KEY
(*dr_id!) REFERENCES 'doctor_details' ('dr_id') ON DELETE NO ACTION)
ENGINE=InnoD ",
xception”: ‘ProgrammngError"

"query": "CREATE TABLE 'hospital_details' ('hospital id' bigint NOT NULL
AUTO_INCREMENT, 'dr_id' bigint NOT NULL,'hospital_link' varchar(4e),
"hospital_name’ varchar(4e),'hospital_address'

varchar (40), 'hospital_city' varchar(40), 'hospital_state'
varchar (40), 'hospital_country' varchar(4e),'hospital_phone_no'

varchar (15), 'hospital_speciality' varchar(4e),'doctor_link' varchar(40),
'hospital_website_link' varchar(40), PRIMARY KEY ('hospital_id')
CONSTRAINT 'dr_ ‘|dfk' FOREIGN KEY ('dr_id') REFERENCES 'doctor_details'
('dr_id') ON DELETE NO ACTION) ENGINE=InnoDB" }

Figure 8: Log Understanding

19

B.2 Code, Bugs and Exceptions

Task : Code Exception cause reasonlng

or error in the

Analyze the code and

Input

CODE :

public class MainActivity extends ActionBarActivity {
private static final String TAG = "MainActivity
private static final String EXTRA_MESSAGE = "message"
Discovery discovery;

boolean discoveryStarted;

@InjectView(R.id.txtInput)

EditText txtInput;

@InjectView(R.1d. txtReceived)

TextView txtReceived;

@InjectView(R.1id.txtFeedback)

TextView txtFeedback;

- [Truncated]
iscoveryListener discoverylistener = new DiscoverylListener() {
@override
public void onDiscoveryStarted() {
.setText(ryStarted ");
}
@override

ublic void onbiscoveryStopped() {
txtFeedback.setText("onDiscoveryStopped ");

@override
public void onDiscoveryError (Exception e) {
txtFeedback.setText("onDiscoveryError ");

@override
public void on: i red(In inetAddress, Intent
intent) {
if (intent hasExtra(EXTRA MESSAGE)) (

.setText("ol ")s
String nessage = s getStringExtra(EXTRA_MESSAGE) + " from
inetAddre:

txtkece1ved setText (message) ;

{xtFeedback. setText ("Intent discovered, no message'
1
}
1
¥

EXCEPTION :

11-25 13:28:37.744 7618-7634/be.appwise.networkintents E/
AndroidRuntime : FATAL EXCEPTION: Thread-684

Process: be.appwise.networkintents,
PID: 7618

java,langANulaninterException

at be.appwisi ity$1.

(Ma1nA:t1v1ty java:88)

at_com.androidzeitgeist.ani.discovery.DiscoveryThread. run
(DiscoveryThread. java:66)

Figure 9:

B.3 Log and Metric Summarization

"

the root cause of the issue.

Response

Error Cause : The null pointer exception occurred in the app\1<at1nn due
to the txtFeedback property being null. It is recommended t the
value using findViewsyId within your onCreate method, follow1ng the call
to setContentView.

Code Exception Reasoning

20

Task : Log and Metric summarization

Analyze the log and corresponding metrics related to the incident, summarize the issue with reasoning.

Input

LOG :

Time: 110423 12:50:39 User@Host: root[root] @ localhost [127.6.0.1]
Query_time: 0.468253 Lock_time: 0.256125 Rows_sent: 1 Rows_examined:
3

METRICS :

db.Locks.Innodb_row_lock_time

7

6
2 s
H
g o4
9
¥ 3
8
) 2
H
1
o
1248 1249 1250 1251 1252 1253 1254
Time
db.Locks.innodb_row_lock_waits.avg
as
30
°
H 25
2
2 20
H
¥ 15
8
5l 10
0s
0o
12:48 12:49 12:50 12:51 12:52 12:53 12:54
Time

db.Locks.Table_locks_imme

table_locks_immediate
®

12:48 12:49 12:50 12:51 12:52 12:53 12:54

Time

Response

Between timestamps 2023-04-11T12:50:00.000Z and 2023-04-11T12:52:05.000Z,
MysQL faced a significant 7125ms delay acquiring row locks, indicating
extended lock held by another transaction. Simultaneously,
innodb_row_lock_waits wait event confirmed time spent waiting for locks.
This prolonged lock acquisition time impacts SQL query performance and
requires investigation. Analyze resource-intensive update queries,
ensuring they operate on indexed columns with a reasonable row count.
Overall, the lock metrics indicate a potential performance issue which
may need query optimization.

Figure 10: Multi-Modal Reasoning with Logs and Metric Timeseries

21

B.4 Trace Summary

Task : Trace summary

The task is to analyze series of flame graphs then summarize the interaction among different services. The goal is to identify and summarize the relationships between
these services, pinpoint pathways with high latency that adversely impact overall performance.

o
&
,\@fj/

Input Response

express.request PUT/credit-offers/items/:itemld 255
express.middleware bound dispatch 24.9s
express.middleware anonymous 24.8s
http.request PUT http.request PUT 20s
flask. uT uT 19.85

credit- i

(RO AR eSSemeSinG w5 (S =t

flask.dispatch_request 19.65 2785

collateral items.get_existing_collateral_items_batch 19.5s

requests.requests 625 iR

flask. 14s

pymysal.

flask.dispatch. 137s aquery

compute_collateral/compute-collateral/:batchid 13.65
pymysql.query 3.7s

fastapi.request 19.4s

Figure 11: Trace Summary

B.5 Software Engineering Reasoning

Task : Software Engineering Reasoning

Provide a response to the question pertaining to a software engineering task, considering both best and bad i in areas like i systems, and
networking, etc.

Input ——> Response

Question: Why is it dangerous to use MutableInteger? Answer: MutableInteger lacks thread safety and is vulnerable to retaining
stale values. Consequently, when one thread invokes the set operation,
concurrent threads making get calls may or may not see the update. This
can result in significant issues, including unexpected exceptions,

rrupted data structures, inaccurate computations, and infinite loops.

Figure 12: Software QA

B.6 Cloud DevOps Understanding

22

Task : DevOps Reasoning

Offer a comprehensive response to the question posed in a DevOps scenario, taking into account best practices in areas such as security, cost optimization, and other

relevant aspects to ensure a well-rounded and effective solution.

Input

Question: A company is planning on deploying a newly built
application on AWS in a default VPC. The application will consist of
a web layer and database layer. The web server was created in public
subnets, and the MySQL database was created in private subnets. ALl
subnets are created with the default network ACL settings, and the
default security group in the VPC will be replaced with new custom
security groups. The following are the key requirements:

i) The web servers must be accessible only to users on an SSL
connection.

1) The database should be accessible to the web layer, which is
created in a public subnet only.

4ii) ALl traffic to and from the IP range 182.20.0.0/16 subnet should
be blocked.

Response

Answer: Create a database server security group with an inbound rule for
MySQL port 3306 and specify the source as a web server security group.
And then create a web server security group with an inbound rule for
HTTPS port 443 traffic from anywhere (6.0.0.0/0). Create network ACL
inbound and outbound deny rules for IP range 182.20.0.0/16.

Figure 13: DevOps QA

23

C Appendix: Rouge-2 Metric Normalization for Summarization Tasks

Rouge scores are notoriously hard to quantify since they rely on the comparison of automatically
generated summaries with reference summaries, introducing subjectivity and variability in the
evaluation process. Additionally, the reliance on lexical overlap and n-gram matching in Rouge
metrics may not capture the nuances of semantic equivalence, making it challenging to discern the
true informativeness and quality of a generated summary. Furthermore, Rouge scores might not fully
account for aspects like fluency, coherence, or the overall meaningfulness of the summary, contributing
to the complexity in their interpretation. However, Rouge-2 has been identified as the most effective
proxy for the mentioned metrics in tasks related to summarization. Nevertheless, the challenge lies in
the non-intuitiveness of this metric. To enhance its interpretability and significance, we adopt the
inter-annotator expert agreement score as our baseline. This involves averaging the pairwise Rouge-2
scores provided by three human experts, namely E1, E2, and E3. Our investigation revealed that
humans tend not to favor a specific summary if it contains more hallucinations, categorizing such
summaries as "undesirable". Consequently, if a particular model prediction exhibits more than two
hallucinations, we assign a score of 0.

ROUGE-2g, g, + ROUGE-2, g, + ROUGE-2g, 5,
3

Inter-Annotator ROUGE-2 Score Average =

ROUGE-2,, 5, + ROUGE-2,, g, + ROUGE-2,, g,
3

Predicted ROUGE-2 Score Average =

AVG_Rouge-2
AVG_Rouge-2

predicted

Normalize Model Prediction Score =
annotator

24

	Introduction
	Introducing CoMELT for Observability
	Related Work
	Problem Statement
	Architecture
	Model Training
	Pre-Training: Continued domain pre-training
	Instruction tuning and Fine tuning
	Chaos Training

	Evaluation
	Results

	Discussion
	Conclusion
	Appendix: Sample RCA Reports
	Memory Exhaustion
	Insufficient Resource Allocation
	HTTP Error Debugging
	Database Debugging
	Configuration Issue

	Appendix: Task Definition and Examples
	Log Understanding
	Code, Bugs and Exceptions
	Log and Metric Summarization
	Trace Summary
	Software Engineering Reasoning
	Cloud DevOps Understanding

	Appendix: Rouge-2 Metric Normalization for Summarization Tasks

